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ABSTRACT

We present a computational scheme to locally align a
collection of RNA sequences using sequence and
structure constraints. In addition, the method
searches for the resulting alignments with the most
significant common motifs, among all possible collec-
tions. The first part utilizes a simplified version of the
Sankoff algorithm for simultaneous folding and align-
ment of RNA sequences, but maintains tractability by
constructing multi-sequence alignments from pair-
wise comparisons. The algorithm finds the multiple
alignments using a greedy approach and has simila-
rities to both CLUSTAL and CONSENSUS, but the core
algorithm assures that the pairwise alignments are
optimized for both sequence and structure conserva-
tion. The choice of scoring system and the method of
progressively constructing the final solution are im-
portant considerations that are discussed. Example
solutions, and comparisons with other approaches,
are provided. The solutions include finding consensus
structures identical to published ones.

INTRODUCTION

in their sequence, so alignments of them based solely on sequence
conservation are usually incorrect. There has also been much
work on RNA secondary structure prediction, for example
through free-energy minimization of structures,{1). But these
methods work on single sequences and are not generally reliable
enough to accurately predict the structures of entire sets of RNA
sequences. There is a method to build a multiple alignment based
on structure predictions of individual sequenced),(but this
ignores the sequence component of the alignment. Simulated
annealing has also been applied to the problem of aligning
multiple RNA structures1(3) and to fold individual sequences
(14). Also a genetic algorithm has been applied to fold individual
sequencesl). It is generally agreed that comparative methods
are the most reliable for determining the structure of a set of
related RNA sequencesg 17). However, those methods require
that the alignment be known in advance. If reasonably good
alignments can be obtained, a very effective method is an iterative
procedure that uses the alignment to predict the structure, then
refines the alignment based on the structure, and repeats the
process until no further improvement is seen. However, the actual
use of such methods are not very automated and usually require
the careful attention of an expert to attain the final resulting
alignment. Perhaps the most promising automated approach is the
use of stochastic context-free grammars (SCEG)L®) which
perform global alignment considering both sequence and struc-

Locating sequence as well as structure motifs in a set of RNtire conservation. Eddst al (18) even show how this method
sequences is of general interest. For example, all of the methais be used to discover the structure model that is common to the
that do structure prediction based on phylogenetic data requset of sequences. However, these methods do not work well on
that the alignment of the sequences be known in advance. Thatal alignments. This is the problem we are most interested in,
alignment process is usually done by hand and is one of there the conserved motifs represent only a portion of the
biggest problems in using that approach. The method presentedhilable sequences. Such is usually the casénwitno selected
here promises to automate the alignment and structure determifdNAs, and also with regulatory regions in RNA. In fact, interest
tion process, and can be used on normal phylogenetic data, inndentifying regulatory regions in DNA sequencg8?2) has
SELEX (1) type data where the RNAs have been seléctatio,  motivated this work. The problem is more complicated because
and when one has a collection of genes that are coordinat¢he motifs being searched for contain structural, as well as
regulated at the translational level. In contrast to many other RNgequence, conservation, and also because it is imperative to allow
folding and aligning methods, we present a method whicgaps in the alignment. If gaps are not required, then a simple
performs local structural alignment of RNA sequences. The workxtension to the sequence alignment method can identify the
here is an extended version 8J.( common motifs quite wellX3).

Much work has been put into sequence alignment, &4, ( With real data there is always the possibility that some of the
including methods to align multiple sequences, &g)( but N sequences are not really related to the rest, but have been
RNA sequences are often conserved more in their structure thacluded in the set erroneously, or for other reasons, for example
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that theN sequences are functionally related but fall into two (odo many more comparisons between different subsets of
more) structural classes so that there is not a single motif thatssquences.
common to all of them. In general we want to idenkifyc N
sequences that contain the most significant common motif. In OWATA SETS
approach that common motif will appear in the alignment of the
M sequences, and failure to get good alignments with the restwe select four published data sets for investigation, all from
the sequences will indicate that they do not belong to the sar8g|EX (1) experiments and for which a consensus structure has
structural class. However, fo sequences, there are essentiallypeen proposed. The first set (H1) of RNA was found to bind to the
2Nsubsets of sequences, and it would not be practical to examimgman immunodeficiency virus type 1 rev protein, and consists
all these subsets to identify the one with the most significanif three families of hairpin loop27). The second set (H2)
common motif. Thus we include an approach in which poorlgontains a pseudoknot with specific affinity for HIV-1-RT. This
aligned subsets are discarded. data set also contains erroneous sequences which have beer

In 1985 David Sankoff 24) published an algorithm to found to be retained by nitrocellulose filters in the absence of
optimally fold and align multiple RNA sequences. The maimprotein ¢8). The third set (THEO) of RNA binds to the
limitation of his algorithm is that its time complexity®6L3N) for ~ bronchodilator theophylline and has a conserved sequence
N sequences of length That makes it impractical for any but the pattern and a consensus structure consisting of a circularly
smallest problems. However, it is easily computed for twgermuted and broken hairpin loop9). In particular it has a
sequences of moderate length. Therefore, we have adaptedcanserved CCU bulge. The fourth set (R17) is RNA ligands for
approach used in pairwise progressive alignment methods, suble bacteriophage R17 coat proteif)( which has characteristic
as CLUSTAL 6,6), in which each step of the procedure require¢etra-loops and requires an A-bulge in the stem. The length of all
alignment of only two entities. Each entity can be either afhe sequences is in the range of 30-50 nt, and the data set size:
individual sequence or an alignment of sequences. We also usefigge from 13 to 36 sequences. For each data set we have usec
strategy of the greedy algorithm in CONSENSUR)( of  ©only the variable part of the sequences. If we had included the
maintaining many intermediate solutions so as to minimize tHgonstant regions our program would simply have aligned by
likelihood of missing the optimal solution. While this approacHhem. Since, for some of the selected sequences, the common
does not guarantee that we will find the optimal solution, as doBtif overlaps the constant region, these will not be included in
the Sankoff algorithm, it does have one advantage (besidb§ Subsetof sequences identified by the program. However, they
tractability) over that method, which is that it can locate the subseq" €asily be identified by later searching for the motif in the
with the most significant core structure. entire sequence, including the constant region.

We have simplified the basic Sankoff algorithm in two
important ways. His algorithm minimizes the total cost of thé/ETHOD
alignment and, simultaneously, the energy of the structures. o ) o
Because we are specifically looking for local alignments, wéhe basic principles derived by Sankdif are simplified and
adopt the approach of the Smith—-Waterman algorithm for locg&iktended to perform alignment between two collections (entities)
sequence alignment3)( Therefore we maximize a score basecPf already aligned sequences, merging them into a new collection
on a combination of sequence similarity and structure. F&f sequences. We extend the 2-D dynamic programming to 4-D
convenience we choose to score the structure based only on #8&mic programming which includes folding and show that this
number of base pairs, and not their stacking enerbfiysThis 'S S|r_n|Iar_to the 2-D case and can be dong with a similar score
change allows us to use the basic Sankoff algorithm to find tffaatrix. Finally we add the feature of pruning away low score

highest scoring local alignment of the RNA sequences. (Sggllections (filtering) frqm the_ set_of all collections of aligned
below for further details of the scoring system.) sequences. The collections with highest scores are the ones usec

The second major simplification reduces the time complexit suggest consensus structures for the sequences within the giver

to O(L4), rather than th@(L®) for two sequences of the standard ollection.

algorithm. We do this by not allowing for branching structures.

We justify this approach by claiming that we do not expect oUfrom 2-D to 4-D dynamic programming for comparing

program to identify the complete structural motif in a single pastwo sequences

but rather to give us a good ‘core structural alignment’ which can ) _ ) ) .

be used to obtain the complete motif by existing methods. We?" comparison with our new algorithm, we briefly describe the
certainly expect that the motifs may contain branching structurédd0rithm of Smith and Waterma#) (for finding the maximum
They may even contain pseudoknots, and if that is true even $€ring local alignment between two sequenges (@ ...,an)
completeO(L3’\5 Sankoff algorithm will not find them, nor will andb = (bl, ooy bm)- This algorithm essentially comprises the
SCFG methods. However, given a good alignment of a ‘coralignment part of our algorithm. We are given a ‘scoring matrix’,
region of the common motif, an SCFG method can extend amgy, which defines the similarity between any two basesdb.
refine that to capture more of the motif. And maximum-weightedfhe scoring matrix also includes scores (or penalties) for aligning
matching (MWM) methods can be used to identify pseudoknogbase with a gapy— andA_p. (To simplify the notation, in the

in the aligned sequences5(26). The most difficult part of the ~ following we writeAy to meanA,, , and similarly for gaps
problem, given existing programs, seems to be identifying a goggd meanA, _.) The highest scoring alignhment of subsequences is
candidate local alignment from which the total motif can bghen found using a matrk, initialized as

identified. TheO(L4) algorithm seems quite capable of that, and -

its increased speed (compared to@kie®) version) allows us to Ho=Hyx=0VO0O<i<snandO=< k = m
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Subsequent elements bf are determined by the following maximum scoring subsequence alignments can be obtained from

recursive relationship: the following recursion:
Hisixe1 + Ax, (D ngnerne-y + Sixe (8)
Hi = max Pisct A= 1 Dig-n&+ne-n) + Siwn
Hi k-1 + A—k ’
’ D+ ey T S-w
0 (b)
D+ nynkeny + Sja
[This formulation assumes a constant gap penalty. A more general Do T Sk
formulation, allowing arbitrary gap penalties, is similar, but the
complexity of the algorithm increases. We actually use an affine Dirnevu + Sj--
gap penalty, with different costs for opening and extending gaps, Dj rnyeny + Sk ©
which does not increase the complexity of the algorigtiy(Hix
is the maximum similarity of two segments ending; andb. Dij = maXqy Disayjps1y + Soses 3
The maximum similarity subsequences end at the maximum Digyis + Sy (d)
element ofH, and ‘backtracking’ to zero then provides the ' g
subsequences and their alignméit Constraints on the values D+ mjseny + Seoi
of Ay are that, on average for random sequergeshould be< D.. ’ +s i (e
0, andA_ and Ay should be negative and at least equal to the -0, 0+ 1) ke
largest difference between a match ¢yg.and a mismatch (i.e. D n
Al, 1 2 K. (i+1)j,kl S-,-_,
Another helpful comparison to our method is the sequence Digyw + Sy
folding algorithm of Nussinov and Jacobsaf)( The basic idea D+ T S ke ()
of folding is to find the maximum number of basepairs possible Diwn + S
for any folding of an arbitrary subsequeneg (..,). This is D T
done by testingy's ability to pair with any basa withi <k <
j—1. This folding allows for branching structures, and the
optimal fold is found from the following recursion: The maximalDjjy provides the most similar subsequences
between the two sequences. One difference between this
Mig-1) recursion and that &, above, is that there is no zero value. This
M; = max Mty + 1 if i andj pair. 2 is_because the r_natrg indicates both ends of the alignmeagt,
max{ Mgy + M} with b andg with by, and also because we have to allow for

negative values occurring within the complete alignment. For
example, a hairpin loop might have no similarity between the two

in which each elementin the matkiks a subsequence ofasingle %zbsequences, and therefore have a negative score by itself, yet
LB

sequence. As the algorithm proceeds the maximum number
basepairs for the smaller subsequences has already been ¢
puted. The maxima¥ then provides the configuration contain-
ing the most basepairs. This algorithm allows for branchin

contained within the overall best alignment. Since the

ursion progresses ‘outward’ from the hyper-diagonal ddthe
matrix, those negative values must be kept in order to know the
. ; A CNINgLe score of the complete alignment. The similarity to the scoring
configurations, because of the last line (i.e., thexmampari-  gcheme in the 2-D case is clear. In the 4-D case, each cell of the
sons). By leaving out that line we do not allow for branching, ,iix has 15 neighbors {2~ 1 ‘corners’) along which the

structures and we reduce the complexity f@N°) toO(N). AS  Jjisnment can proceed. In the 2-D there are only thiée @
descrlt_)ed. :_slbove, we assume this faster approac.h will still find t mers’). The letters (a)—(f) to the right of the equation separate
most significant core structure, and that the remainder of the Moo, into different classes depending on the number and

can then be identified by existing methods. distribution of gaps that are added to the alignment. One example
We may now extend the ideas to finding the best subsequen each class is shown in FigureOnly class (a) gives rise to

alignment between two sequences, allowing for conservedg ot ral contribution, and then only i complementary to

basepairing within the two subsequences. Formally, we _find ﬂj‘%ndk is complementary tb This is because we only score
best alignment of the subsequenegs (.,g) and g, ....,h), in

hich th f the ali " : basepairs that are conserved in both sequences.
which the score of the alignment includes terms for SeqUeNCerom the definition o (see next section) it follows that we

similarity betweerd andb and basepairing withiel andb that only need to take the maximum of cases (a), (d) and (f) as the
is conserved at aligned positions. Whereas the Sankdff ( remaining cases can be constructed from these [assuming that the
algorithm minimizes a combination of alignment cost andilignment of two —'s (gaps) gets a score of 0]. For example, an
basepairing energy, we maximize the alignment similarity and tredignment of class (b) can be obtained by an alignment of class (f)
number of basepairs that can be simultaneously formed in bdibilowed by an alignment of class (d). This reduces the scheme
sequences. We define a scoring mafjy;, over all quadruples to only seven cases.

of bases, including gaps. Details of the scoring matrix are The recursion in Figurke(equatiorB) is systematically applied
provided below, but lettingD; i denote the best score of the to all possible combinations ofj, k andl in the two sequences
subsequences( ....,g) and {, ....,ha), then given any scoring by considering a window of varying length along each sequence,
matrix and the constraint of non-branching structures, thas illustrated in Figurg. Since the subsequence comparisons in
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alignment and one for alignment of basepairs. We define the score
* P e matrix S to be the sum of matrice& (alignment) andB
(basepairing)

Figure 1.Inside the vertical dashed bars is the section that is already structurally
aligned, and corresponds to feportion of the right side of equati@ The

bases listed outside of the dashed bars are the new ones being aligned, with eacH. . . . . . .

other or with gaps, and the combined score from all of them is included in théVNICh can be written in a simple way using the classic alignment

Sportion of the recursion equations. The cases illustrate-4f correspond matrix and a matrix defining weighted base complementarity.
to the first example in each class listed in equagion The scor&is then a list of scores for substituting any pair of bases
for any pair of bases (including gaps). The program allows one to
larger windows use the results of comparisons in small flne_ easily the scoring matrix to be used. We have found the
windows, each comparison score is stored for later use in tl lowing scores to W.Ork well, and those _have b.een used for all
matrixDjj . As in other dynamic programming approaches, upofl the examples in this paper (see equdiiorlow): .
completion of the recursive computation of scores, the maximumThls matrix gives a score of +4 for basepairing and_ a"gnf“em
element in_Dis the starting point for retracing steps. HowevermatChes' and a score +3 for any other basepairing without

3,

now the backward trace continues until the interior of th&/gnmentmatches (i.e. for compensating changes). Those are the
subsequence is found; that is, until the previous subseque h'gh?St scores obtalnable. Al oth(_ar Scores are denveq from
consists of a single base. considering only the matching and mismatching of the aligned
positions. Note that the computation of score between two given
subsequences for which the respective positions are considered
fixed (gaps might have been included), may be done by first
Consider the score matrix for structurally aligning a sequance computing the score for sequence alignment, then by computing
againstasequenEe As before, we reserve the indicesdj for the score for structure alignment. I . .

. - . . o To construct the alignment contribution of thisx285 matrix,
respective positions in sequenaEand the indicek andl for e first generalize the classic alignment approach to include
respective positions in sequenbe For structural alignment alignment of any two bases against any two bases (including
betweera andb we construct the total score for each quadruplegaps). In the standard method of aligning two sequences one
(i,j,kl) from two independent contributions, one for sequencdefines a similarity of substitutions for some positioanthe one
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sequence and some positloim another, listed in a score matrix
(calledA in the previous section):

k ATUUUIGIA
ADGG
3 -3 _ A UIGIGIGY—|
1-3-3-3-4 e
3 13-34|c AAICAIGH
A =|3-3 13-4|c¢ 6 0 o
= |33-3 14U
4 4 -4 -4 0| -
i AC G U -

where the gap penalty has been included as the dash (initiation
and elongation gaps are simply represented by two different
matrices). These values are all smaller than those used in Smith
and Waterman3). That is because we are adding a ‘bonus’ for _ , o
basepaiied positons, and sil want to maintain an averagie %, T e o e he e deveen 3 S Mows,
negative score for random alignments. We expand this substitg¥:_ > = . ; _ TN o

tion matrix to include all possible pairs for positior$ in the one @“dmg window of sequenaeis of sizellg = 4, and for sequendz\i = 6.
sequence and positiorisl) in another sequence by adding the
cost Q)i for aligningi to k to the costAg); for aligningj tol,

for non-matching basepairs are higher because they represent

€ compensating changes where the structure is maintained when
Ajk = (Adik + (Ao)j 7  the sequences change. The off-diagonal values occur because
) . G-U basepairs allow complementarity to be maintained when
which constitute the elements Af only one position changes. The valued inause these to be

When Constructing the score matrix for basepairing one m|g|ﬂteated as Compensating Changes in thegmm_tnx

simply put values directly into the 225 matrix. However, itcan  ysing the values listed in equatiGhand10we obtain the total
also be constructed from two simple components, a matrix @tore matrix foS= A + B listed above, equatidh

complementary bases and another type of score matrix. First we

define the complementary weight matrix by Multiple sequence comparison

C = Chifji 2 dandi—k = d 8 We now expand the 4-D dynamic programming algorithm to
= 0 otherwise include alignment between two entities or collections of se-
guences, which do not overlap in the sequences they contain.
whered is the minimal allowed loop size (typically 3), and whereConsider the case of aligning a collectiop afigned sequences

to a collection ofg aligned sequences. The aligned columns
within each separate collection remain unchanged, but insertions

—

00010] A and deletions can occur between the two sets. The score for the
00100] c alignment is the sum of all the pairwise scores amonmg=gil+
cC=(01010| ¢ 9 gsequences. However, we only add in the structural component
- 10100] v of the score if every sequence in both sets is complementary at the

00000] - aligned position pairs. As for the two sequence comparisons, a

iACGU- similar score matrix formalism for multiple sequence comparison
has been constructed, but not discussed here. Hgjlustrates

accounts for the basepairings. In this example we weight thge computation of the score between two windows from the two
basepairing G-U the same as any regular Watson—Crick basepgfjections. The computation is similar to what is done;i)(

To construct the score matiifor basepairing, we require that — ag exira features we include different penalties for initiation
GjGq = 0 implies thaByjq = 0. Inspired by the case of alignment 5,4 elongation of gaps. Also we include an optional basepair
one can define a basepairing alignment mdfrproviding the  g|ongation factor, which scores basepairing such that stacking
score of replacing a basepair in one sequence with a basepaifgigyyored. Whes = 0 the same number of basepairs throughout
another. Then we obtain an alignment will give the same score no matter where the
2 5Tj- basepairings are located. Wheen 0 basepairs are scorBgl +
Bix = vCiCuliji wheref = [5 9]1-;4 10 Wherec is the number of nested stacked pairs up to, but not
= - including ,j) and k).

where the square root normaliZ8sCq. The matrix( must be
symmetric, and can be interpretated as the cost of aligtirig
andj tol, when both andj, as well ak andl basepair. Thus itis Here we briefly outline the basic ideas of applying the greedy
sufficient to defin€ only wheni is complementary tpandkis  algorithm to build up multiple alignments. This has similarities to
complementary tb. Our choice of values serves to give a muchtCLUSTALW (6) and CONSENSUS(1). For a set o different
lower score for basepairing when there are also sequensequences there artl2 (N + 1)= 2N different subsets of two or
alignment matches because these already get a high score. Scorese sequences. In order to find the bist< N aligned

The greedy algorithm
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sequences, the best scores from many different subsets will halie progressive alignmen§,82) performed by CLUSTALW.
to be compared. Since this program performs multiple alignment based on

The raw pairwise greedy algorithm is as follows. First alkequence conservation alone, we would not expect it to identify
individual sequences are compared to each other, then all tteucturally conserved regions. As expected, it does fairly well on
pairwise alignments are compared to all the individual sequenceiata sets with significant amounts of sequence conservation. For
such that no sequence appears more than once in each compe¢&mple, it properly aligns the conserved hairpin loop, and the
son. The next greedy step would be to align all the triplatonserved bulged A, in the R17 dag&B)( but fails to align
alignments to the individual sequences, and compare all tisensistently the conserved stem region. It also adds spuriously
pairwise alignments to each other, still such that no sequenakigned bases near theehd of the sequences that are not part of
appears more than once in each final alignment. The algorithtime functional motif. The H2 dat&%) also contain significant
may then be continued until all sequences have been comparedéguence conservation in the first stem of a pseudoknot, and
a final alignment. This approach is exponential in time, requirin@LUSTALW aligns that region well, although with no suggestion
O(L*NM) time. However, many of these comparisons/alignmentsf the conserved structure. The THEO da#&) (contains
are redundant and many may also be of such low score that tlegiuence conservation, but it is misaligned in the two subclasses.
are unlikely to contribute to the final aligned subset. We can savude H1 dataZ7) has less sequence conservation than the others
many comparisons by eliminating alignments that appear unprand is not well aligned by CLUSTALW.
ductive.

Further work is ongoing to optimize the greedy strategy. For the )
results presented in this paper we have used two means of limitie§VE: covariance models of RNA
the number of comparisons. First, one entity is always a single ) i
sequence. In the notation introduced above, alignments of /"€ COVE program by Eddy and Durbidg] finds tree
sequences are made by aligning one sequence rwithl representations of s_econdary structures by applylng a dyr_1am|c
sequences. Second, after the initial alignment of all pairs ®fogramming algorithm to find pairwise mutual information
sequences, we only store a fixed number of the best scorif§ores of all nucleotlde_posnmns. A covariance model is then
alignments, typically 30. For example, we compare each singﬂ?”VEd from the re'sultln.g optlmal tree representation of thg
sequence to each aligned pair of sequences to generate alignmefitture. The algorithm is also similar to proposed stochastic
of three sequences. But we only keep the 30 highest scorifgntext-free grammar models developed by the Haussler group
alignments for comparison with single sequences to generate fHe»34)- COVE performs global alignment on a collection of

alignments of four sequences. This approach has a tingquences and has been shown to perform well on tRNA for
complexity ofO(L4N4). which a global (consensus) structure is defined. As options in the

Finally, in selecting the ‘best’ alignment k< N sequences, Program one can either construct a model from a set of sequences

there is a problem that scores increase with the number Bfth known structure and apply it to find structures for new
sequences, and so different sized sets are difficult to compare. @gduences, or utilize it to suggest a common structure for a set of
need stopping criteria that indicate the largest set of well-align&gduences. Additional features, like using alignment of the
sequences occurs at some particular round. As a first approachf§uences, are glso available. Itis well known that itis hard to find
look at a few best alignments of each rograhd compare score local features using a global alignment procedure, so we did not
versus alignment length. We find a trade off from which the fina#*Pect this package to perform well on the SELEX data sets, and
alignment is chosen by plotting the scores as a functigraafi It did not. Using the same data sets as for CLUSTALW we did not
stopping at the round for which the rate of change decreases, figd any strong signals for consensus structures, not even if we
at the empirical inflection point. Then we look at the five bestSed the CLUSTALW alignments as input to the program. The
scored alignments ofandr — 1 sequences. Work is ongoing to multiple structural alignment method presented here can be used

make the selection of the ‘best’ alignment more rigorous an® construct a core model which can then be used by COVE to
more automated. extend and refine that model.

RESULTS Tools from the Vienna RNA package

For comparison, we attempt to find the alignment for each data'® Vienna RNA package by Hofacker al (12) includes a

set using three publicly available programs. Depending on tHgEegram RNAfold to find the minimum free energy structures,
data set, and type and amount of conservation, these progr®ié @ Program RNAdistance to find the distance between two
perform with varying degrees of success. None of them giructures interms of the smallest cost along the editing pathwhen
consistently able to identify the structural motif common to the ségPresenting the structures as trees. The RNAfold program is
of sequences as well as our program FOLDALIGN, an impl pased on the work il{,35,36), and the RNAdistance program

mentation of the 4-D alianment and areedv schemes presenf@ythe work in 7-39). We folded each sequence in the data sets
here. ¢ ¢ y P and found that many of the structures resembled the published

structures, when neglecting the H2 pseudoknot. Using RNAdis-

tance to pairwise compare the structures and appropriate cut-off
CLUSTALW scores to select reasonable comparisons, we found a number of

sequences with similar structures (in the respective data sets)
We performed multiple alignment of the SELEX data by using thevere clustered together. However, we did not find a strongest
program CLUSTALW §,6) with default parameters. We used thecommon structure, or the consensus structure for the respective
full dynamic programming alignment between two sequences folata sets.
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Table 1. The strongest aligned class of the H1 data set

GGAUUUGAGAUACAC-GGAA-GUGGACUCUCC 17

GCC-UUGAGAUACACUAUAUAGUGGAC-CGGC 5
GGC-UGGAGAUACAAACUAU-UUGG-CUCGCC 4a
AUU---GAGAAACAC-GUUU-GUGGACUCGGU 6b
ACC-UUGAGGUACUC-UUAA-CAGG-CUCGGU 11
GCA-UUGAGAAACAC-GUUU-GUGGACUCUGU 6a
GAA-UUGAGAAACAC--UAA-CUGGCCUCUUU 14

(G (G 0))) (publ.)
((CHECH(CRE)IDD)))

(FOLDALIGN)

in our data sets), so we would not expect to find more than seven
of them with conserved structure. For those seven sequences
FOLDALIGN finds the proper alignment and consensus struc-
ture matching the published one. This is shown in Tablhe
additional structure identified by FOLDALIGN (Tallg but not
included in the published consensus structure, is included in the
consensus structure for the largest class (figure 3 oRTgf.
FOLDALIGN has captured the interacting bases in an internal
loop. Furthermore FOLDALIGN succeeds in merging the two
strongest classes, missing one sequence in the largest class ant
getting only one sequence wrong in the alignment (not shown).
All of the sequences in the third class utilize part of the constant

The parentheses indicate basepairing. The numbers refer to the published€gion in their structures, and so cannot be aligned properly with

quence labels. Only the aligned part of the sequences are shown

Table 2. The strongest aligned class of the H2 data set

CCAGAGGCCCAACUGGUAAACGGGC 1.17

CCG-AAGCUCAACGGGAUAAUGAGC 2.4a
CCG-AAGCCGAACGGGAAAACCGGC 1.3a
CC-CAAGCGC-AGGGGAGAA-GCGC 1.6
CCG-ACGCCA-ACGGGAGAA-UGGC 1.8
CCGUUUUCAG-UCGGGAAAAACUGA 11
CCGUUACUCC-UCGGGAUAAAGGAG 211
CCGUAAGAGG-ACGGGAUAAACCUC 2.7a
CCG-UAGGAG-GCGGGAUAU-CucCC 2.10
CCG--UGCCG-GCGGGAUAU-CGGC 1.9b
CCG-AACUCG-ACGGGAUAA-CGAG 2.1b
CCG--ACUCG--CGGGAUAA-CGAG 212

[IERR(((G1 BW)); (publ.)

...... () (FOLDALIGN)

The parentheses indicate basepairing (and the square brackets for pseudoknot).
The numbers refers to the published sequence labels. Only the aligned part of

the sequences are shown.

Table 3.FOLDALIGN for the THEO set

AUACCAGUGACAACU-CUCGAG-AUCACCCUUGGRAIB-6,9

AUACCAUCGUGUAAG-CAAGAG-CACGACCUUGGCAG TCT8-5

AUACCAACUA---CUCUCAC-A-AUAGUCCUUGGAAG TR8-8

AUACCAACGG----C-AUAU-UUGCUGUCCUUGGAAG TR8-14
AUACCAACAG----C-AUAU-UUGCUGUCCUUGGAAG TCT8-1,10
AUACCAGCAU----C-GUCU-U-GAUGCCCUUGGCAG TCT8-4,8

SH((((((Crmmm—— N)--))-. (publ.)
HE(((((CHaemB)))En)BE

(FOLDALIGN)

FOLDALIGN

the other sequences when using only the variable region.

Even better results are obtained for the data seB2 As
mentioned this data set contains a pseudoknot, two overlapping
stem—loop regions, and therefore violates the knot constraint in
the dynamic programming. One stem region is highly conserved
in sequence, and the other has almost no sequence conservatior
FOLDALIGN aligns the sequence conserved regions based on
their sequence alignment, but at the same time aligns the other
stem region which is only conserved in structure (see Table
This is a good example of the application of the method. Programs
like MWM (25,26) could refine the alignment to identify the
entire motif, including the pseudoknot.

Table 4. FOLDALIGN for the R17 set of the sequences which have at least
six basepairs in the stem

UGCGCACCAUCAGGGCGU 12
AAUGCACCAUCAGGGCAU 6
AUGUUACCAUCAGGAACA 27
UGCAGAGGAUCACCCUGC 24
AUGUCACGAUCACGGGCA 17
AGUAGAGGAACACCCUAC 32
AUUAGAGGAUCACCCUAG 25
UAUAGAGCAUCAGCCUAU 21
AAGAUAGCAUCAGCAUCU 28

1@ (publ.)

R(((@(em)))] (FOLDALIGN)

Table 5.FOLDALIGN for the R17 set of the sequences which have at least
five basepairs in the stem

We determined structural alignments for each of the data sets and
compared them to the published consensus structures. For each
of the investigated data sets we did find the subset with the

strongest common structure, matching what has been published.
The first data set, HR{), consists of 20 sequences and has been

assigned three structural classes, the classes all containing the
same structural elements. The largest class consists of 10
sequences, however three of them use the constant SELEX
regions (see refl) in the basepairing (which were not included

CUCACCAUCAGGGGG 3
CUCACCAUCAGGGGG 4
AGGACCAUCAGGCCU 18
CGCACCAUCAGGGCG 12
UGCACCAUCAGGGCA 6
GUUACCAUCAGGAAC 27
CAGAGGAUCACCCUG 24
GUCACGAUCACGGGC 17
UAGAGGAACACCCUA 32
UAGAGGAUCACCCUA 25
UAGAGCAUCAGCCUA 21
GAUAGCAUCAGCAUC 28
(@) (publ.)

((G(e)))

(FOLDALIGN)
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Figure 4. The logos for the data. The symbols for sequence alignment are A, C, G, U and —. The letter displaying the mutual inébeatidrabepaired positions
is M. The sequence-structure logos aredptte data set H1h) the data set H2g) the data set THEO and))(the data set R17. Only positions with positive information
content are shown. The letters ‘a’ and ‘b’ indicate basepairing for respective regions. For the data set H2 we insevtedpseukioinot for illustration.

The third data set, THEQ), consists of two structural classes sequences with at least five basepair stems (Babhdignment
which are circular permutations of each other. FOLDALIGNOof larger subsets are nearly correct, although they do contain a few
identifies the proper motif from the largest class, getting thenisaligned sequences. In general, for this data set and the others,
alignment exactly right for six of the eight sequences (see Jable the identification of subsets of sequences with conserved core
The two remaining sequences contain the shortest stems, only ®touctures should be enough information to extend and refine the
basepairs in one case, and require the most gaps for propemplete motif utilizing existing programs mentioned above.
alignment. The second class could not be aligned with the first dueln the results presented above, a few different scoring matrices
to the circular permutation, but their common structure should beere used, with essentially the same results for each. Work in
identifiable if they are treated as a separate class (not tested). progress will further explore various scoring schemes and their

The final set, R1730), consists of 36 sequences. For many ofmpact on resulting alignments. In real time the runs (alignments)
these, part of the structural motif is contained in the constamtere completed in 4-12 h depending on the set sizes. The runs were
region of the sequence, and so is not available to the program fmrformed on a Silicon Graphics power challenge IRIX64 machine.
alignment. However, we obtained a perfect alignment for the To display the sequence structure content of the alignments we
subset of nine sequences that have at least six basepairs in the steoav four examples of structure logeg))(in Figure4. The
(Table 4). We also found a perfect alignment for 12 of 16structure consists of a sequence part, which is a generalized form
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of the Schneider and Stephens sequence Efyo®n top of this 11 Zuker, M. and Stiegler, P. (1984)icleic Acids Re®, 133-148.
sequence logo the mutual information between correspondifg :noéag'éﬁgs't-e';-vp':‘(’féga;rmsﬁé?t‘i'%}Fér::é'm Bn;n;izf;eriéés" Tacker, M.,
basepairs has been displayed using the letter ‘M’. (http://wviwthi.univie. ac. aEivo/RNAY).
CONCLUSION 13 ;(Ei)rS,éJéYCOIe, J. R. and Pramanik, S. (1986nput. Appl. BiosclL2,
We have presented a method to structurally align a set of R SCT"‘“Z' M. and Steger, G. (1996Mol. Biol 25|5..254‘ 266. |
sequences, as well as select the subsets containing the sGiglt%ea"g_ziVanBatenb“rg' F. H.D. and Pleij, C. W. A. (1396pl.
significant alignments. The method, which consists of 4-Qg westhof, E. and Michel, F. (1994) In K. Nagai and I. W. Mattaj (eds),
dynamic programming and a greedy algorithm for pairwise RNA-Protein InteractionsRL Press at Oxford University Press, Oxford,
comparison of sequences, was able to fully find the published UK. pp. 26-51.
alignments of conserved motifs. The complete structure was nt Westhof, E., Auffinger, P. and Gaspin, C. (1996) In M. J. Bishop and C. J.
always obtained, as in the case of the pseudoknot due to the R2WIings (edsPNA-Protein Sequence AnalydRL Press at Oxford
. . L - . University Press, Oxford, UK. pp. 255-278.

dynamic programming limitation. But the core alignment that iSg gqqy, S. and Durbin, R. (199)icleic Acids Re€2, 20792088
obtained can be used by existing methods to complete the motif (htp:/genome.wustl.edu/eddtcove).
identification. For this type of problem the method clearlyl9 Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sj6lander, K.,
outperforms methods based on sequence alignment alone, orUnderwood, R. C. and Haussler, D. (1984icleic Acids Re22,
structure based methods like stochastic context-free grammars %Bdssﬁfniiléob and Hartzell, G. W, Il (19886, Natl. Acad. Sci. USA
free energy minimization, the latter including pairwise alignment” g¢"11g3 11g7. T T T
of structures only. We conclude that our method, to a very large Hertz, G. z., Hartzell, G. W, Il and Stormo, G. D. (1988mput. Appl.
extent, can replace the alignments currently made by hand, or Biosci.6, 81-92.
provide significant hints to assist with ‘hands-on’ methods. 22 Heumann, J. M., Lapedes, A. S. and Stormo, G. D. (1994) In Altman, R.,

Further work is ongoing to improve the identification of the most g;‘f(';gd' Eﬁé }:naggér?é{l '(-:eg:][gféni&”:lﬁairgse’n?- S(mesei‘i'”ﬁzlgm;
significant subset allgnments. We are aIs_o working to fully Biology AAAI Press, Menlo Park, CAup. 188194,
automate the detection of subclasses of motifs; the current versign peymann, J. M., Lapedes, A. S., and Stormo, G. D. (19%5pteedings
is really only capable of finding the single most significant of the 1995 World Congress on Neural Networki\NNS Press,
common structure, but alignments based on disjoint subsets of the Washington, DCpp. 771-775.
sequences can be utilized for classification into distinct motg4 Sankoff, D. (198551AM J. Appl. Mathd5, 810-825.
classes. The method is also very amenable to parallelization, which $&: R:B. and Stormo, G. D. (1995) In Rawlings, C., Clark, D., Altman,

hould v facili . . d | R., Hunter, L., Lengauer, T. and Wodak, S. (édg)ceedings of the Third
should greatly facllitate more extensive comparisons and analySes. |piemational Conference on Intelligent Systems in Molecular Biology

AAAI Press, Menlo Park, CA. pp. 75-80.
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